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Abstract
The influence of the spin-dependent phase shifts (SDPSs) associated with the electronic
reflection and transmission amplitudes acquired by electrons upon scattering at the potential
barrier on the Andreev reflection probability of electron and hole excitations for a
ferromagnet/isolator/d-wave superconductor (FIS) contact and on the charge conductance of the
FIS contact is studied. Various superconductor orientations are considered. It has been found
that for strong ferromagnets and ultrathin interface potential for the {110} oriented d-wave
superconductor the presence of the SDPS can lead to the appearance of finite-voltage peaks in
the charge conductance of the F/I/d-wave superconductor contact. On the contrary, for the {100}
orientation of the d-wave superconductor the presence of the SDPS can lead to restoration of the
zero-voltage peak and suppression of finite-voltage peaks. The spin-dependent amplitudes of
the Andreev reflection probability and energy levels of the spin-dependent Andreev bound
states are found.

1. Introduction

The oscillating character of the spatial dependence of the
anomalous Green function (GF) in a ferromagnet in various
hybrid structures containing a ferromagnet/superconductor
with a singlet order parameter (F/S) interface is due to the
presence of electron spin subbands with different values of
Fermi momenta pα in a ferromagnetic metal (F) [1–4] (α is
the spin index, which denotes the projection of the electron
spin on the direction of the magnetic moment of a ferromagnet,
(α =↑,↓)). Such a manifestation of the proximity effect
is the basis for the creation of the π -Josephson junction [5],
various spin-valve schemes [6–10], being the main elements of
promising superconducting electronics [11–13].

The suppression of the Andreev reflection [14] in point
F/S contacts [15] due to the decrease of the number of
conducting channels is another consequence of the presence
of spin subbands in a ferromagnetic metal. This fact is
used to determine the spin polarization of ferromagnetic
materials [16–20], to study the order parameter symmetry of

high-temperature superconductors [21–24] and to control the
spin-polarized currents [25–27].

Recently attention has been paid to one more property
of hybrid F/S structures: the influence of the SDPSs
θd
α and θ r

α associated with the electronic reflection and
transmission amplitudes rα and dα acquired by electrons upon
scattering on the potential barrier on thermodynamic [28] and
transport [29, 30, 33] characteristics of hybrid structures with
a spin-active interface:

dα =
√

DαvF
x,α/vS

x exp(iθd
α )); rα = √

Rα exp(iθ r
α).

Here dα is the amplitude of transmission from a ferromagnet
into a superconductor; Dα and Rα = 1 − Dα are transmission
and reflection coefficients, respectively; vF

x,α and vS
x are the

Fermi velocity projections on the x-axis, being perpendicular
to the plane of the F/I/d contact.

It has been found that the difference of the SDPSs due to
the difference of potential barriers for electrons with various
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spin projections α results in the appearance of a π state in the
S/FI/S junction (FI is a ferromagnetic isolator) without taking
into account the proximity effect [29, 30]. Recently [31, 32] as
a result of numerical calculations it has been established that
in the N/FI/S structure (N is a normal metal) for any interface
spin polarization there is a critical interface resistance, above
which the conventional even-frequency proximity component
vanishes completely at the chemical potential, while the odd-
frequency component remains finite.

The presence of the SDPS also leads to the formation of
the spin-dependent Andreev bound states in the superconduct-
ing layer of the N/F/s-wave superconductor contact [33]. In the
tunneling limit these states appear as resonance peaks in the
dependence of the ballistic charge conductance on the applied
bias voltage V if V is smaller than a superconducting gap.

The influence of the SDPSs on the charge conductance
of a single-channel quantum point contact of an F/s-
wave superconductor and on the charge conductance of a
multichannel ballistic contact of an F/I/s-wave superconductor
(I is an isolator) was studied in [34, 35], respectively. In [34]
it has been found that for a weakly transparent contact, the
SDPS induces subgap resonances in the charge conductance
of the quantum point contact. For high transparencies, these
resonances are smoothed, but the shape of the signals remains
extremely sensitive to the SDPS. In [35] it has been found that
when F is strongly polarized, the peak in the conductance of
the F/I/s-wave superconductor contact can be restored at zero
voltage.

Such a strong influence of the SDPS on the transport
properties of hybrid structures with ferromagnetic elements
allows one to suppose that they may be successfully used
in experiments on Andreev spectroscopy of ferromagnets,
superconductors and in various applications in the field of
nanospintronics.

This paper is devoted to the theoretical study of the SDPS
influence on the Andreev reflection and charge conductance of
a point F/I/d-wave superconductor contact.

Superconductors with d-wave symmetry (the dx2−y2

symmetry of the order parameter is considered) have
an internal, momentum-dependent phase, which strongly
influences the transport properties of contacts between them
and other materials. In [36] it was shown that when the angle γ

between the a axis of a superconducting crystal and the normal
to the surface of the high-ohm interface is π/4 (the {110}
orientation of the d-wave superconductor), then a bound state
is formed on the Fermi level near the high-ohm interface. This
zero-energy bound state resulting from the repeated Andreev
reflections [37, 38] causes a sharp peak at a zero voltage in
the dependence of the charge conductance of the N/I/d-wave
superconductor on the applied bias voltage [39].

The first theoretical study of spin-polarized tunneling
spectroscopy of F/I/d-wave superconductor junctions was
performed in [40–42]. It has been found that the subgap
charge conductance behavior is qualitatively different from
a nonmagnetic case. In particular, it has been found that
for the {110} orientation of the d-wave superconductor the
zero-voltage peak in the charge conductance is suppressed by
the exchange interaction due to the suppression of Andreev

reflections and that it splits into two peaks under the influence
of the exchange interaction in the insulator.

The influence of the SDPSs θd
α and θ r

α on the
charge conductance of the F/I/d-wave superconductor contact
in [40–42] was not studied.

The main result of this paper is that the presence of the
SDPS leads to the lifting of the spin degeneracy of the bound
state on the Fermi level for the {110} orientation of the d-
wave superconductor and to the formation of spin-dependent
Andreev bound states inside the superconductor gap. For
strong ferromagnets and ultrathin interface potential, it can
lead to additional (by a factor of two or more) suppression of
the zero-voltage peak in the dependence of the conductance
of the F/I/d-wave superconductor contact on the applied bias
voltage and to the appearance of finite-voltage peaks. For
the {100} orientation of the d-wave superconductor, spin-
dependent Andreev bound states inside the superconductor
gap are formed. As a result, the finite-voltage peaks can be
suppressed and the zero-voltage peak can be restored. Spin-
dependent amplitudes of the Andreev reflection probability and
energy levels of the spin-dependent Andreev bound states are
found.

This work illustrates that the study of the influence of
the SDPS on the charge conductance of the point F/I/d-wave
superconductor contact can provide an interesting insight into
spin-dependent transport.

A theoretical possibility to study the influence of the
SDPSs on the I –V characteristics of superconducting weak
links with ferromagnetic elements appeared after the boundary
conditions (BCs) for the quasiclassical GF were obtained.
In [43], BCs for the quasiclassical GF for two metals in contact
via a magnetically active interface in terms of an interface
scattering matrix were derived. In [29], BCs for the retarded
and advanced quasiclassical GFs were obtained in terms of
Riccati amplitudes [44, 45]. In [33], BCs in terms of Riccati
amplitudes were obtained for the nonequilibrium quasiclassical
GF. In [46], quasiclassical equations of superconductivity for
metals with a spin-split conduction band were derived and BCs
for the temperature quasiclassical GF for the F/S interface were
obtained. The model interface was the same as in [43, 47].

In this paper, calculations are carried out using
quasiclassical GFs and the relevant BCs obtained in [46].

2. Finding differential conductance of a point FIS
contact

2.1. The general expression for differential conductance of a
point contact through quasiclassical GF

In hybrid F/S structures the Andreev reflection is modified.
The reflected hole has some parameters (for example, the
velocity modulus and the phase shift) different from those of
the incident electron because it moves in a subband with an
opposite spin. Such spin-discriminating processes due to the
exchange field in a ferromagnet lead to the formation of spin-
dependent Andreev bound states inside the gap [30, 29]. As a
result, the spectral density of the charge conductance GFIS of
the FIS contact at a zero voltage is no longer a symmetrical
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function of energy ε. The condition of the time reversal
invariance has the form GFIS(ε, α) = GFIS(−ε,−α). The
generalization of the charge conductance expression [48] for
this case results in the following formula for GFIS(V ) [35]:

GFIS(V ) = e2 A

32π2T

∑
α

Tr
∫

dp‖
(2π)2

∫ ∞

−∞
dε

1

coth2
(

ε−eV τ̂z

2T

)

× [1 − ĝA
s τz ĝR

s τ̂z − ĝA
a τ̂z ĝR

a τ̂z + ϒ̂A
s τ̂zϒ̂

R
s τ̂z − ϒ̂A

a τ̂zϒ̂
R
a τ̂z].

(1)

In equation (1), V is the applied bias voltage; A is the
contact area; e is the electron charge; T is the temperature; τ̂z is
the Pauli matrix; p‖ is the momentum in the contact plane; (ĝs,
ϒ̂s) and (ĝa, ϒ̂a) are quasiclassical retarded (R) and advanced
(A) GFs symmetric (s) and antisymmetric (a) [35] with respect
to the projection of the momentum p̂ on the Fermi surface on
the x axis, being perpendicular to the contact plane, composed
according to the rule T̂s(a) = 1/2[T̂ (px) ± T̂ (−px)].

Besides the matrix quasiclassical GF ĝ, the equation
for which is analogous to that derived in [50], equation (1)
includes the matrix GF ϒ̂ , describing the interference of waves
incoming to the interface and outgoing from it. The function
relation with the matrix one-particle temperature GF and the
equations that the function obeys are presented in the appendix.
Calculations in equation (1) are to be carried out on the
boundary of any contacting metal.

2.2. Finding the quasiclassical GF

Let us assume that the barrier with width d is located in
the region −d/2 < x < d/2, the superconductor occupies
the region x > d/2, and the ferromagnet occupies the
region x < −d/2. To find GFs for each metal, one has to
solve quasiclassical equations of superconductivity for metals
with a spin-split conductivity band simultaneously with their
BCs derived in [35]. These quasiclassical equations and the
boundary conditions to them are valid only for contacts of
ferromagnets with singlet superconductors:

sign( p̂x)
∂

∂x
ĝ + 1

2
v‖

∂

∂ρ
(v̂−1

x ĝ + ĝv̂−1
x ) + [K̂ , ĝ]− = 0,

sign( p̂x)
∂

∂x
ϒ̂ + 1

2
v‖

∂

∂ρ
(v̂−1

x ϒ̂ − ϒ̂v̂−1
x ) + [K̂ , ϒ̂ ]+ = 0,

K̂ = −iv̂
− 1

2
x (iεn τ̂z + 
̂ − �̂)v̂

− 1
2

x − i( p̂x − τ̂x p̂x τ̂x)/2;

̂ ≡ 
̂(x, p); [a, b]± = ab ± ba.

(2)
In this section, εn = (2n + 1)πT is the Matsubara frequency;
τ̂x and τ̂z are the Pauli matrices; ρ = (x, y) are coordinates
in the contact plane; �̂ is the self-energy part; ĝ are matrix
temperature GFs:

ĝ =
(

gα,α fα,−α

f +
−α,α −g−α,−α

)
, ĝ =

{
ĝ> for p̂x > 0

ĝ< for p̂x < 0,

Moreover,


̂ =
(

0 
(x, p)

−
∗(x, p) 0

)
, p̂x =

(
px,α 0

0 px,−α

)
,

where 
(x, p) is the order parameter; px,α and p‖ are
projections of the momentum on the Fermi surface on the x
axis and the contact plane, respectively; v̂x = p̂x/m and
v̂‖ = p‖/m.

BCs for a specular reflection of electrons from the
boundary p‖ = p↓ sin ϑ↓ = p↑ sin ϑ↑ = pS sin ϑS have the
form [35]:

( ˆ̃gS

a )d = ( ˆ̃gF

a )d, (
ˆ̃
ϒ

S

a )d = (
ˆ̃
ϒ

F

a )d ,
(√

R̂α −
√

R̂−α

)
(
ˆ̃
ϒ

+
a )n = α3( ˆ̃g−

a )n,

− ˆ̃
ϒ

−
s =

√
R̂α( ˆ̃g+

s )d + α1( ˆ̃g+
s )n,

(√
R̂α −

√
R̂−α

)
(
ˆ̃
ϒ

−
a )n = α4( ˆ̃g+

a )n,

− ˆ̃
ϒ

+
s = (R̂α)−

1
2 ( ˆ̃g−

s )d + α2( ˆ̃g−
s )n,

(3)

where ˆ̃g±
a(s) = 1/2[ ˆ̃gS

a(s)±ˆ̃gF

a(s)]. Functions ˆ̃
ϒ

±
a(s) are determined

analogously. The R̂α matrix is determined analogously to the
p̂α matrix. In equation (3) and below, the indices d and n
denote the diagonal and the nondiagonal parts of the matrix
(T̂d(n) = 1/2[T̂ ± τz T̂ τz]), respectively. GFs ˆ̃g are connected
with GFs, being the solutions of equation (2), by the following
relationships [35]:

( ˆ̃gS

s )n = (ĝS
s )n cos(θα) + iτ̂z(ĝS

a )n sin(θα);

(
ˆ̃
ϒ

S

s )d = (ϒ̂S
s )d cos(θα) + iτ̂z(ϒ̂

S
a )d sin(θα)

( ˆ̃gF

s )n = (ĝF
s )n cos(βr

α) + iτ̂z(ĝF
a )n sin(βr

α);

(
ˆ̃
ϒ

F

s )d = (ϒ̂F
s )d cos(βr

α) + iτ̂z(ϒ̂
F
a )d sin(βr

α)

( ˆ̃gS

a )n = (ĝS
a )n cos(θα) + iτ̂z(ĝS

s )n sin(θα);

(
ˆ̃
ϒ

S

a )d = (ϒ̂S
a )d cos(θα) + iτ̂z(ϒ̂

S
s )d sin(θα)

( ˆ̃gF

a )n = (ĝF
a )n cos(βr

α) + iτ̂z(ĝF
s )n sin(βr

α);

(
ˆ̃
ϒ

F

a )d = (ϒ̂F
a )d cos(βr

α) + iτ̂z(ϒ̂
F
s )d sin(βr

α)

(
ˆ̃
ϒ

F
)n = (ϒ̂F)n; (

ˆ̃
ϒ

S
)n = (ϒ̂S)n;

βr
α = θ r

α − θ r−α

2
; θα = βr

α − (θd
α − θd

−α).

(4)

The diagonal parts of matrices ˆ̃g are equal to the corresponding
matrices ĝ. Coefficients αi are:

α1(2) = 1 +√
R↑ R↓ ∓√

D↑ D↓√
R↑ +√

R↓
,

α3(4) = 1 −√
R↑ R↓ ±√

D↑ D↓.

When solving equations (2), let us assume that the order
parameter is a step function, being zero in the ferromagnet and

3



J. Phys.: Condens. Matter 22 (2010) 185703 B P Vodopyanov

finite in the superconductor. Then for S metal the solution is as
follows:

ĝ(x, p) = e−sign( p̂x )K̂ (x− d
2 )Ĉ(p)esign( p̂x )K̂ (x− d

2 ) + Ĉ0(p),

ϒ̂(x, p) = e−sign( p̂x )K̂(x− d
2 )ϒ̂ e−sign( p̂x )K̂ (x− d

2 );
ϒ̂ = ϒ̂(x = 0, p).

(5)

Matrices Ĉ0(p) are the values of GFs ĝ far from the F/S
boundary:

ĈS
0 (p) =

(
g; f
f +; −g

)
= 1√

ε2
n + |
(p)|2

(
εn; −i
(p)

i
∗(p); −εn

)
.


(p) = 
d(T ) cos(2ϑS − 2γ ).

(6)
In equation (6) 
d(T ) is the maximum value of the order
parameter at temperature T ; ϑS is the angle between the
electron momentum in the superconductor and the x axis,
being perpendicular to the contact plane, and γ is the angle
between the crystal a axis of the d-wave superconductor and
the x axis.

For F metal the solution has the same form as equation (5)
except for changing the exponent argument from (x − d/2) to
(x + d/2); ĈF

0 = τ̂zεn/|εn|.
GFs ĝS in equation (5) have to tend to ĈS

0 at x → +∞
and GFs ĝF to ĈF

0 (p) at x → −∞. By matrix multiplication in
equation (5) and in the corresponding equation for ĝF, we find
that for the above to hold it is necessary that at x = +d/2 and
at −d/2 the relationships

ĈS
0 (p)ĈS(p) = −ĈS(p)ĈS

0 (p) = sign( p̂x)ĈS(p)

ĈF
0 (p)ĈF(p) = −ĈF(p)ĈF

0 (p) = −sign( p̂x)Ĉ
F(p)

(7)

are fulfilled respectively. It follows from these relationships
that

ĝS
s = X̂ ĈS

a + X̂ ; ĝS
a = ĈS

a + ĈS
0,a;

ĝF
s = ĈF

0 − ĈF
0 ĈF

a ; ĝF
a ≡ ĈF

a

(8)

where

X̂ = (1 + ĈS
0,a)(Ĉ

S
0,s)

−1, X̂ = τ̂z(X)d + (X̂)n .

In equation (8) ĈS
0,s(a) are symmetric and antisymmetric

combinations of the matrix ĈS
0 (p) with respect to the projection

of the Fermi momentum on the x axis: ĈS
0,s(a) = 1/2[ĈS

0 (px)±
ĈS

0 (−px)], X̂ = 1̂. Matrices ϒ̂S(F) satisfy the relationships:

ĈF
0 (p)ϒ̂F(p) = ϒ̂F(p)ĈF

0 (p) = −sign( p̂x)(p)ϒ̂F(p)

ĈS
0 (p)ϒ̂S(p) = ϒ̂S(p)ĈS

0 (p) = sign( p̂x)(p)ϒ̂S(p),
(9)

being the condition for the functions ϒ̂F(x, p) and ϒ̂S(x, p) to
tend to zero when x tends to −∞ and +∞, respectively.

The ˆ̃gF

n function appears in the ferromagnet due to the

proximity effect. The absence of the ˆ̃gF

n function in a
ferromagnet leads to zero value of the ϒ̂F function.

This result can be obtained if, at first, one finds ˆ̃gS

a and
ˆ̃gF

a FGs from equation (2) and BCs (3) having excluded the
function ϒ̂F from BCs (3).

Then from the BCs (3) and relationships (4) it follows that:

α3( ˆ̃g−
a )n = α4( ˆ̃g+

a )n, α1( ˆ̃g+
s )n = α2( ˆ̃g−

s )n. (10)

From the first equality in equation (10) we find the relation

between functions ( ˆ̃gF

a )n and ( ˆ̃gS

a )n :

( ˆ̃gF

a )n =
√

D↑ D↓
1 −√

R↑ R↓
( ˆ̃gS

a )n .

By substituting this relation into the second equality in

equation (10) and using the relations (4) and (8) we find ( ˆ̃gF

a )n:

ˆ̃gF

a = ĝF
a e−iβr

αsign(εn) = −
√

D↑ D↓τ̂z(X̂)n

Z

Z = (1 −√
R↑ R↓)[Xd cos(θα) + i sin(θα)]

+ (1 +√
R↑ R↓)sign(εn)[cos(θα) + iXd sin(θα)].

(11)

Knowing ( ˆ̃gF

a )n and ( ˆ̃gS

a )n, from equations (3) and (4) we
find functions ĝF

s , ϒ̂
F
s and ϒ̂F

a necessary for calculation of the
conductivity in equation (1) and calculate the conductance at
the ferromagnet side.

2.3. Differential conductance of a point FIS contact

After carrying out the analytical continuation in functions

( ˆ̃gF

a )n, ĝF
s , ϒ̂F

s , ϒ̂F
a (substituting iεn for ε ± δ for retarded and

advanced GFs, respectively), we obtain an expression for
the charge conductance σF/S(V ). For angles γ = 0 and
π/4σF/S(V ) is as follows:

σF/S(V ) = e2 A

π

∫
dp‖

(2π)2

×
{∫ ∞

|
(ϑS)|
dε

2T

[
1

cosh2( ε+eV
2T )

+ 1

cosh2( ε−eV
2T )

]

× εξR(D↑ + D↓) + ε(ε − ξR)D↑ D↓
Z⇑

+
∫ |
(ϑS)|

0

dε

2T

[
D↑ D↓

cosh2( ε+eV
2T )

+ D↑ D↓
cosh2( ε−eV

2T )

]
|
(ϑS)|2

Z⇓

}
.

(12)

For γ = 0:


(ϑS) = |
d | cos(2ϑS);
Z⇑ = [ε(1 − W ) + ξ(1 + W )]2 + 4W |
(ϑS)|2 sin2(θα);
Z⇓ = [1 + 2W cos(2θα) + W 2]|
(ϑS)|2 − 4Wε2 cos(2θα)

− 16W 2(|
(ϑS)|2 − ε2)ε2 sin2(2θα)

[1 + 2W cos(2θα) + W 2]|
(ϑS)|2 − 4Wε2 cos(2θα)
;

W = √
R↑ R↓; ξ =

√
ε2 − |
(ϑS)|2.

(13)

4
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For γ = π/4:


(ϑS) = |
d | sin(2ϑS);
Z⇑ = [ε(1 + W ) + ξ(1 − W )]2 − 4W |
(ϑS)|2 sin2(θα);
Z⇓ = [1 − 2W cos(2θα) + W 2]|
(ϑS)|2 + 4Wε2 cos(2θα)

− 16W 2(|
(ϑS)|2 − ε2)ε2 sin2(2θα)

[1 − 2W cos(2θα) + W 2]|
(ϑS)|2 + 4Wε2 cos(2θα)
.

(14)

For γ = 0, when θα = 0, the expression for the conductance
obtained in [35] follows from equation (12). In the case of a
nonmagnetic metal, when D↑ = D↓ this expression is the same
as that obtained in [47], and for D = 1/(1+Z 2) this expression
is the same as that obtained in [48]. For γ = π/4, when
θα = 0, the expression for the conductance obtained in [49]
follows from equation (12).

3. Andreev reflection

The calculation of quasiclassical GFs in the expression for the
conductance allows one to conclude that for energies lower
than |
(ϑS)|(ε2 < |
|2), the following relation is true:

[1 − ĝA
s τz ĝR

s τ̂z − ĝA
a τ̂z ĝR

a τ̂z + ϒ̂A
s τ̂zϒ̂

R
s τ̂z − ϒ̂A

a τ̂zϒ̂
R
a τ̂z]

= 4[− ˆ̃gA

a τ̂z
ˆ̃gR

a τ̂z] ∼ 1̂. (15)

Comparison of the form of under-gap conductances in
equation (1) and that of the corresponding equation (25)

in [48] shows that the matrix elements ( ˆ̃gR

a )F and ( ˆ̃gA

a )F are
the amplitudes of the Andreev reflection probability a(ε, θα)

in FIS contacts. Let us take the matrix elements of ( ˆ̃gR

a )F given
by equation (11) as a(ε, θα):

a(γ, ε, θα) =
√

D↑ D↓
(ϑS)

Z(γ )
, (16)

where

Z(0) = (1 −√
R↑ R↓)[ε cos(θα) −

√
|
(ϑS)|2 − ε2 sin(θα)]

+ i(1 +√
R↑ R↓)[

√
|
(ϑS)|2 − ε2 cos(θα) + ε sin(θα)].

Z(π/4) =(1 +√
R↑ R↓)[ε cos(θα) −

√
|
(ϑS)|2 − ε2 sin(θα)]

+ i(1 −√
R↑ R↓)[

√
|
(ϑS)|2 − ε2 cos(θα) + ε sin(θα)].

The presence of the imaginary part in functions a(γ, ε, θα)

means that Andreev reflection is accompanied by the
phase shift. The Andreev reflection probability Aα(γ, ε)

(Aα(γ, ε) = a(γ, ε, θα)a∗(γ, ε, θα)) is:

Aα(γ, ε) = D↑ D↓|
(ϑS)|2
|Z(γ )|2 ,

|Z(0)|2 = [1 −√
R↑ R↓]2|
(ϑS)|2

+ 4
√

R↑ R↓[
√

|
(ϑS)|2 − ε2 cos(θα) + ε sin(θα)]2,

∣∣∣Z
(π

4

)∣∣∣
2 = [1 −√

R↑ R↓]2|
(ϑS)|2

+ 4
√

R↑ R↓[
√

|
(ϑS)|2 − ε2 sin(θα) − ε cos(θα)]2.

(17)

Figure 1. Structure of the diagrams corresponding to Andreev
reflection in the superconductor: diagram (a), a one-act process;
diagram (b), a two-act process. The vertex © is an Andreev
reflection of electron-like (solid lines) and hole-like (broken lines)
quasiparticles by the pair potential. The vertex • is the normal
reflection of electron-like and hole-like quasiparticles by the barrier
potential. When the solid line transforms into a broken line, ©
denotes the vertex βeh

α,−α . When the broken line transforms into the

solid line, © denotes the vertex βhe
−α,α . Parameters dα, d̃α, rα and r̃α

are related as follows: d̃α = dαv
S
x /v

F
xα ;

r̃α = −r ∗
αdα/d∗

α; Dα = dα d̃∗
α [47].

From this equation it follows that: (1) the spin-mixing angle �

used in [28, 29] corresponds, in our notations, to θα (for S/F/S
and N/F/S contacts � = θ r

↑ − θ r
↓ = θd

↑ − θd
↓ [30, 29]); (2) for

γ = 0, when θα < 0 the Andreev reflection probability of the
electron excitation with the spin projection α is larger than that
of the hole excitation; when θα > 0, the Andreev reflection
probability of the hole excitation with the spin projection α

is larger than that of the electron excitation; for γ = π/4,
the relation is reversed; (3) the Andreev reflection probability
has maxima at ε = εb

α(γ ) (at values of the energy of electron
(hole) excitations corresponding to the energy levels of spin-
dependent Andreev surface bound states).

The energy of spin-dependent bound states is:

εb
α(0) =

{
−|
(ϑS)| cos(θα) for (π/2) � θα � 0,

|
(ϑS)| cos(θα) for −(π/2) � θα � 0,

εb
α

(π

4

)
=
{

|
(ϑS)|| sin(θα)| for (π/2) � θα � 0

−|
(ϑS)|| sin(θα)| for −(π/2) � θα � 0.
(18)

Spin-dependent Andreev surface bound states are formed in
a superconductor due to the interference of electron-like and
hole-like particles with different SDPSs. One may demonstrate
this by using a phenomenological argument in [38]. Let
us consider diagrams in figure 1 corresponding to Andreev
reflection of an electron with the spin projection α and
energy less than |
| transmitted from a ferromagnet into a
superconductor. The analysis of these diagrams and their
summation makes it possible to obtain the following expression
for a phenomenological expression of the amplitudes of the

5
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Andreev reflection probability a(ε, θα):

a(ε, θα) = dαd̃∗
−αβeh

α,−α[1 + r̃∗
−αr̃αβeh

α,−αβhe
−α,α

+ (r̃∗
−αr̃αβeh

α,−αβhe
−α,α)2 + · · ·] = dαd̃∗−αβeh

α,−α

1 − r̃∗−αr̃αβeh
α,−αβhe−α,α

=
√

Dα D−α pF
xα/pF

x−α eiβr
αβeh

α,−α

eiθα − e−iθα
√

Rα R−αβeh
α,−αβhe−α,α

. (19)

The corresponding probability of Andreev reflection is:

A(ε, θα) = Dα D−α pF
x,α/pF

x,−αβeh
α,−αβ∗eh

α,−α

1 + Rα R−α|βeh
α,−α|2|βhe−α,α|2 − Q

Q√
R↑ R↓

= cos(2θα)[βeh
α,−αβhe

−α,α + β∗eh
α,−αβ∗he

−α,α]

+ i sin(2θα)[β∗eh
α,−αβ∗he

−α,α − βeh
α,−αβhe

−α,α].

(20)

By comparing formulae (16), (17), derived using quasiclassical
GFs, with formulae (19), (20), obtained using phenomenolog-
ical arguments, we find the expressions for the vertices βeh

α,−α

and βhe−α,α . So for γ = π/4:

βeh
α,−α =

√
pF

x,−α

pF
x,α

ε − i
√|
(ϑS)|2 − ε2

|
(ϑS)|

(ϑS)

|
(ϑS)|

βhe
−α,α = −

√
pF

x,α

pF
x,−α

ε − i
√|
(ϑS)|2 − ε2

|
(ϑS)|

∗(ϑS)

|
(ϑS)| .
(21)

For γ = 0 the expression for the vertex βhe−α,α is of an
opposite sign. It follows from formulae (20) and (21) that
in the absence of the interferential term Q the probability of
Andreev reflection is a constant (independent of the energy
ε) quantity. The interference of electron-like and hole-like
particles reflected by the pair potential and the interface results
in the formation of spin-dependent Andreev surface bound
states. For γ = 0 at θα = 0 the maximum in the probability of
Andreev reflection is at ε = ±|
d | as in [48]. At θα = ±π/2
spin-dependent Andreev surface bound states with width �:

� = (1 − √
R↑R↓)|
(ϑS)|

2 4
√

R↑R↓ (22)

are formed at ε = 0 on the Fermi level. For γ = π/4 the spin
degeneracy of the level on the Fermi surface [36] at θα �= 0
is removed. Two energy levels symmetric with respect to the
Fermi level are formed inside the energy gap.

4. Appearance of Andreev bound states in the
conductance of the FIS contact

We present below the results of numerical calculations of the
charge conductance of the FIS contact taking into account the
phase shifts. In the numerical calculations the relation between
Fermi momenta of contacting metals was the following:
pS = ηp↑ + (1 − η)p↓. Calculations are carried out for a
rectangular barrier with a height U counted from the bottom
of the conduction band of a superconductor. The electron
wavefunction in the isolator χ(x) is as follows:

χ(x) = C1 exp(μx x) + C2 exp(−μx x),

Figure 2. Dependence of the angle θ↑ on cos(ϑ↓) for various values
of the p↑d parameter. Other parameters are as follows: δ = 0.1
(δ = p↓/p↑ < 1); η = 0.3; k/p↑ = 0.1.

where μx =
√

k2 + p2
‖; k2 = 2mb(U − ES

F); ES
F is the Fermi

energy of a superconductor, mb is the mass of an electron in
a barrier. In this case the expressions for θd

α and θ r
α have the

following form:

θd
α = θ̃d

α − i 1
2 (pF

x,α + pS
x)d; θ r

α = θ̃ r
α − ipF

x,αd;

θ̃d
α = arctan

(
(pF

x,α pS
x − μ2

x) tanh(μx d)

μx(pF
x,α + pS

x )

)
;

θ̃ r
α = θ̃d

α − π

2

(
1 − pF

x,α − pS
x

|pF
x,α − pS

x |

)

− pF
x,α − pS

x

|pF
x,α − pS

x |
arctan

(
(pF

x,α pS
x + μ2

x) tanh(μx d)

μx |pF
x,α − pS

x |

)
,

(23)

so that the angle θα[θα = (θ r
α − θ r−α)/2 − (θd

α − θd−α)] =
(θ̃ r

α − θ̃ r−α)/2 − (θ̃d
α − θ̃d−α) does not depend on the location of

the barrier.
Figure 2 shows dependences of the angle θ↑ on cos(ϑ↓).

All angles are connected by a specular reflection p‖ =
p↓ sin ϑ↓ = p↑ sin ϑ↑ = pS sin ϑS. Figure 2 shows that
the angle θ↑, being a combination of phase shifts θd

α and
θ r
α, is almost independent of the electron trajectory for strong

ferromagnets. With decreasing polarization of a ferromagnet
(increasing δ = p↓/p↑ < 1), the values of the θ↑ angle
decrease. At μx d ∼ k(p↑d)/p↑ > 1, the angle θα � 1.

Figure 3 shows the results of numerical calculations of the
normalized conductance of the FIS contact σF/S(V )/σ0 for the
{110} oriented d-wave superconductor (γ = π/4). As follows
from equations (18) and figure 4(a), in the presence of the
SDPS only a narrow area of electron trajectories (and not all
electron trajectories as in the case of absence of the SDPS),
corresponding to sin(2ϑS) ∼ 0 determines the conductance
magnitude at V ∼ 0. The majority of electron trajectories
contribute to the conductance magnitude at finite voltage
values. This results in splitting of the peak in conductance
at zero voltage. With decreasing parameter p↑d the splitting

6
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Figure 3. Normalized conductance σF/S(V )/σ0 (σ0 = e2 p↑/π2)
derived from equations (12) and (13) as a function of the applied bias
voltage V for the {110}-oriented d-wave superconductor (γ = 0) for
various values of the parameter p↑d not taking into account (dotted
lines) and taking into account (solid lines) the phase shifts.

Figure 4. Dependence of the angles sin(2ϑS) and | cos(2ϑS)| on
cos(ϑ↓) for various values of the polarization of a ferromagnet δ
(δ = p↓/p↑ < 1) at η = 0.3.

magnitude increases but peaks do not appear at values of
V/
d(T ) = 1 even at θ↑ = π/2 due to the order parameter
dependence on the momentum.

Figure 5. Normalized conductance σF/S(V )/σ0 derived from
equations (12) and (14) as a function of the applied bias voltage V
for the {100}-oriented d-wave superconductor (γ = π/4) for various
values of the parameter p↑d not taking into account (dotted lines)
and taking into account (solid lines) the angle θ↑. For all curves,

d(T )/2T = 20; η = 0.3.

Figure 5 shows the results of numerical calculations of
the normalized conductance of the FIS contact σF/S(V )/σ0 for
the {100}-oriented d-wave superconductor taking into account
and not taking into account the phase shifts. Not taking
into account the angle θα (dotted lines), the plots illustrate
the suppression of Andreev reflection due to a decrease in
the number of conducting channels as the polarization of the
ferromagnet increases. Their number is determined by the
number of conducting channels in the subband with a lower
value of the Fermi momentum (in our case it is p↓). The
presence of the SDPS and the order parameter dependence
on the momentum (see figure 4(b)) yields that each electron
trajectory forms a bound state inside the superconducting gap.
As a result, the peaks in conductance approach each other with
increasing θα angle (decreasing parameter p↑d), and the zero-
voltage peak is restored. This effect is more pronounced for
superconductors with s-symmetry of the order parameter (see
figure 6).

The behavior of the finite and zero-voltage peaks in
the conductance at other orientations of a superconducting
crystal axis is of particular interest at high polarizations of the
ferromagnet conduction band. It depends on the parameter
p↑d . At p↑d = π , upon variation of the angle γ from zero
to π/4, the finite-voltage peaks shown in figure 5 (solid line)
will move towards each other, and at γ = π/4 the solid line in
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Figure 6. Normalized conductance σF/S(V )/σ0 derived from
equations (12) and (14) as a function of the applied bias voltage V
for the s-wave superconductor for various values of the parameter
p↑d . For all curves, 
d(T )/2T = 20;η = 0.3.

figure 3 will be reproduced. Upon reduction of the parameter
p↑d , the finite-voltage peaks at γ = 0 will move towards each
other because the energy of bounded states tends to zero. The
peaks are of finite width, and at certain value of the parameter
p↑d they merge. As a result, a peak centered at V = 0 will
appear. Now, upon variation of the angle from zero to π/4 the
width of the zero-voltage peak will decrease. For a very narrow
range of the angle γ near π/4, the zero-voltage peak splits into
two peaks with a small spacing between them. This splitting is
a manifestation of the bound state emerging at γ = π/4 (see
equation (18)).

5. Conclusion

In this paper, the influence of the SDPSs associated with
the electronic reflection and transmission amplitudes acquired
by electrons upon scattering at the potential barrier on the
Andreev reflection probability of electron and hole excitations
for a FIS contact and the charge conductance of the FIS
contact as a function of the applied bias voltage have been
studied. Analytical expressions for spin-dependent Andreev
bound states in a superconductor are found. It is found that
for strong ferromagnets and ultrathin interface potential with
parameter μx d < 1 at p↑d � 2π , the presence of the SDPS
has a tremendous effect on the charge conductance of the FIS
contact. The zero-voltage peak for the {110} orientation of the
d-wave superconductor due to lifting of the spin degeneracy
can be additionally suppressed, by a factor of two or more, and
finite-voltage peaks in the charge conductance can appear.

On the contrary, the finite-voltage peaks for the {100}
orientation of the d-wave superconductor can be suppressed
and the zero-voltage peak can be restored.

The fitting of equation (12) to the experimental
dependence of the charge conductance of the FIS contact on
the applied bias voltage makes it possible to determine the
polarization of a ferromagnet.
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Appendix A. Determining quasiclassic GFs ĝ and ϒ̂.
Deriving equation (2)

Let us start with equations for equilibrium thermodynamic GFs
in the matrix form [50], taking into account the spin splitting
of the conduction band:
(

iεnτz + 1

2m

∂2

∂r2
+ 
̂(r) + μ̂ − �̂

)
Ĝ(εn, r, r′) = δ(r−r′).

(A.1)
Here �̂ is the self-energy part which includes the scattering by
nonmagnetic impurities and phonons [50]. An explicit form of
this term is not needed for deriving the quasiclassic equations.
Ĝ(εn, r, r′) is the matrix temperature GF:

Ĝ(εn, r, r′) =
(

Gαα Fα −α

F+
−αα G̃−α −α,

)
; μ̂ = 1

2m

(
p2

α

p2−α

)
,

τ̂z is the Pauli matrix; εn = (2n + 1)πT is the Matsubara
frequency, α is the spin index; 
̂(r) is the order parameter
(as defined below equation (2)); pα is the Fermi momentum;
m is the electron mass; r = (x, R), R = (y, z); x-axis is
perpendicular to the contact plane.

Passing to coordinates ρ̃ and ρ(ρ̃ = ρ − ρ ′, 2ρ = R +
R′) in equation (A.1) and performing Fourier representation
with respect to the ρ̃ coordinate, the following equation for
Ĝ(x, x ′) = Ĝ(x, x ′, ρ, p‖, εn) (p‖ is the momentum in the
contact plane) is obtained:
(

iεnτz + 1

2m

∂2

∂x2 + i
v‖
2

∂

∂ρ
+ p̂2

x

2m
+ 
̂ − �̂

)
Ĝ(x, x ′)

= δ(x − x ′). (A.2)

In equation (A.2): v‖ = p‖/m, p̂x = [ p̂2
α − p‖2]1/2.

Then the Zaitsev representation generalized for the
description of metals with a spin-split conduction band is used
for the function Ĝ(x, x ′):

Ĝ(x, x ′) =
2∑

n, m=1

Âk(x)Ĝn, m(x, x ′) Â∗
n(x ′),

Âk(x) = e−i(−1)k p̂x x ; p̂x =
(

px, α 0
0 px, −α

)
; p̂x = m v̂x .

(A.3)

Representation (A.3) explicitly takes account of oscillating
terms present in the function Ĝ(x, x ′) and waves of the
exp[±i (p↑x + p↓x ′)] type, arising from partial reflection
of the first electron of the superconducting pair from the
interface [51]. Functions Ĝn,m(x, x ′) change at distances of
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an order of the mean free path of electrons in a metal. By
substituting equation (A.3) into equation (A.2) and neglecting
the second x-derivative, we obtain an equation for slow
changing functions Ĝk,n(x, x ′):

Âk(x)

(
iεnτz − i(−1)k v̂x

∂

∂x
+ i

v‖
2

∂

∂ρ
+ 
̂(x) − �̂

)

× Ĝkn(x, x ′) Ân(x ′) = δ(x − x ′). (A.4)

Analogously, an equation conjugate to (A.1) gives:

Âk(x)Ĝkn(x, x ′) Ân(x ′)
(

iεnτz + i
v‖
2

∂

∂ρ
+ 
̂(x ′) − �̂

)

+ Âk(x)
∂Ĝkn(x, x ′)

∂x ′ Ân(x ′)i(−1)nv̂x = δ(x − x ′). (A.5)

In equations (A.4) and (A.5) let us pass to functions ĝ0 ≡
ĝ0(x, x ′) ≡ ĝ0(x, x ′, ρ, p‖, εn) and ϒ̂0 ≡ ϒ̂0(x, x ′) ≡
ϒ̂0(x, x ′, ρ, p‖, εn), being continuous at a point x = x ′, by
using formulae:

ĝ0 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ĝ>
0 = 2i

√
v̂x Ĝ11(x, x ′)

√
v̂x − sign(x − x ′)

for p̂x > 0

ĝ<
0 = 2i

√
v̂x Ĝ22(x, x ′)

√
v̂x + sign(x − x ′)

for p̂x < 0

ϒ̂0 =
{
ϒ̂>

0 = 2i
√

v̂x Ĝ12(x, x ′)
√

v̂x , for p̂x > 0

ϒ̂<
0 = 2i

√
v̂x Ĝ21(x, x ′)

√
v̂x , for p̂x < 0.

(A.6)
Let us call the obtained equations (A.4′) and (A.5′), respec-
tively. By subtracting equation (A.5′) from equation (A.4′)
when n = k and adding equations (A.4′) and (A.5′) when
n �= k, one may get equations for functions ĝ0(x, x ′) and
ϒ̂0(x, x ′). In these equations we set x = x ′. Finally, the
following equations are obtained:

sign( p̂x)B̂(x)
∂ ĝ0

∂x
B̂∗(x) + v‖

2

∂

∂ρ
B̂(x)[v̂−1

x , ĝ0(x)]+ B̂∗(x)

+ [K̂0, B̂(x)ĝ0 B̂∗(x)]− = 0,

sign( p̂x)B̂(x)
∂ϒ̂0

∂x
B̂(x) + v‖

2

∂

∂ρ
B̂(x)[v̂−1

x , ϒ̂0]− B̂(x)

+ [K̂0, B̂(x)ϒ̂0 B̂(x)]+ = 0,

B̂(x) = ei sign( p̂x ) p̂x x , K̂0 = −iv̂
− 1

2
x (iεn τ̂z + 
̂ − �̂)v̂

− 1
2

x ,

[a, b]± = ab ± ba. (A.7)

Considering that in the expression for B̂(x) the matrix p̂x can
be written with the help of the Pauli matrix τ̂x as a sum of two
components proportional to the unit matrix and Pauli matrix τ̂z:

p̂x = ( p̂x + τ̂x p̂x τ̂x)/2 + ( p̂x − τ̂x p̂x τ̂x)/2, (A.8)

and putting in equations (A.7) functions ĝ (ĝ ≡ ĝ(εn, p‖, ρ, x))
and ϒ̂ (ϒ̂ ≡ ϒ̂(εn, p‖, ρ, x)), by formulae

ĝ = ei sign( p̂x ) �̂ x ĝ0e−i sign( p̂x ) �̂ x;
�̂ = ( p̂x − τ̂x p̂x τ̂x)/2,

ϒ̂ = ei sign( p̂x ) �̂ xϒ̂0ei sign( p̂x ) �̂ x+i sign( p̂x )(θ
r
α+θ r−α)/2,

(A.9)

one obtains equations (2). If quasiclassic GFs ĝ and ϒ̂ are
independent of the ρ coordinate, the condition ĝ2 = 1 is met.
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